알고리즘/AI
파운데이션 모델 (Foundation Model)
1. 파운데이션 모델 (Foundation Model)의 개요 (1) 파운데이션 모델의 개념 개념도 개념 맞춤형 AI 서비스의 효율적 구축을 위해 자기 지도…
온디바이스 AI (On-Device AI)
1. 온디바이스 AI (On-Device AI)의 개요 (1) 온디바이스 AI 부각 배경 항공기, 오지 등 인터넷 서비스 이용이 어려운 환경에서 AI…
VAE (Variational Auto-Encoder)
1. VAE (Variational Auto-Encoder)의 개념 및 특징 개념 특징 원본 특징을 보존하며 새로운 데이터 생성 위해 Encoder, Decoder, Sample Latent…
소버린 AI (Sovereign AI)
1. 소버린 AI (Sovereign AI)의 개요 (1) 소버린 AI의 부각배경 및 필요성 (2) 소버린 AI의 개념 및 특징 개념 특징…
섀도우 AI (Shadow AI)
1. 섀도우 AI (Shadow AI)의 개념 및 위험성 개념 기업이나 조직에서 허가되지 않거나 임시로 생성한 AI 모델을 사용하는 미인증 AI…
연합학습 (Federated Learning)
1. 연합학습 (Federated Learning)의 개념 및 필요성 (1) 연합학습의 개념 개념도 개념 분산 저장된 데이터 이동 없이 각 장치의 학습…
생성형 AI (Generative AI)
1. 생성형 AI (Generative AI)의 개요 (1) 생성형 AI의 개념 및 특징 개념 특징 대규모 데이터에서 패턴과 규칙을 학습하여 사용자…
파인튜닝 (Fine-Tuning)
1. 파인튜닝 (Fine-Tuning)의 개념 및 필요성 개념 필요성 인공지능 모델이 특정 작업이나 도메인에 적합하도록 이미 훈련된 인공지능 모델에 특정 데이터셋을…
어텐션 메커니즘 (Attention Mechanism)
1. 어텐션 메커니즘의 개념 및 필요성 개념 seq2seq의 경사감소 소멸(Gradient Descent Vanishing) 등 RNN 모델의 문제 해결을 위해 출력 단어…
GNN (Graph Neural Network)
1. GNN (Graph Neural Network)의 개요 등장 배경 딥러닝 모델은 CNN, RNN, Transformer 등 다양한 신경망 모델 종류로 발전했지만, 복잡한…