데이터베이스
SEMMA (Sample, Explore, Modify, Model, and Assess)
1. 데이터 마이닝 방법론, SEMMA의 개념 SEMMA (Sample, Explore, Modify, Model, and Assess): 샘플링, 탐색, 수정, 모델링, 평가 절차 개념…
CRISP-DM (Cross-Industry Standard Process for Data Mining)
1. 데이터 마이닝 방법론, CRISP-DM의 개념 CRISP-DM (Cross-Industry Standard Process for Data Mining): 데이터 마이닝을 위한 산업 간 표준 절차…
KDD (Knowledge Discovery in Database)
1. 데이터 마이닝 방법론, KDD의 개요 KDD (Knowledge Discovery in Database) (1) KDD의 개념 및 특징 개념 특징 DW, OLAP,…
ODS (Operational Data Store)
1. ODS (Operational Data Store)의 개념 및 특징 개념 데이터에 추가 작업 위해 다양한 데이터 원천(Source)들로부터의 데이터를 추출·통합한 데이터베이스 특징…
델타 레이크 (Delta Lake)
1. 델타 레이크 (Delta Lake)의 개요 (1) 데이터 레이크의 문제점 및 델타 레이크의 필요성 (2) 델타 레이크의 개념 및 특징…
데이터 전처리 (Data Preprocessing)
1. 데이터 전처리 (Data Preprocessing)의 개념 개념 데이터의 정합성과 가치 확보 위해 정제, 통합, 변환 등의 과정을 통해 데이터 분석…
CDC (Change Data Capture)
1. CDC (Change Data Capture)의 개념 개념도 개념 소스/대상 DB 간 데이터 동기화를 위해 트랜잭션 발생 시 변경 로그를 추출/전송하여…
ETL (Extract, Transform, Load)
1. ETL (Extract, Transform, Load)의 개념 및 필요성 개념도 개념 BI, 고급 분석 등 위해 다양한 소스의 데이터를 추출(Extract)하고 변환(Transform)하여…
Headless CMS (Content Management System)
1. Headless CMS의 개요 (1) Headless CMS의 개념 및 특징 Headless CMS: Headless Content Management System 개념 특징 자유로운 콘텐츠…
벡터 데이터베이스 (Vector Database)
1. 벡터 데이터베이스 (Vector Database)의 개념, 필요성 개념 필요성 대량의 고차원 데이터 저장 및 조회 위해 컨텐츠 벡터 임베딩 및…