X

알고리즘/AI

섀도우 AI (Shadow AI)

1. 섀도우 AI (Shadow AI)의 개념 및 위험성 개념 기업이나 조직에서 허가되지 않거나 임시로 생성한 AI 모델을 사용하는 미인증 AI…

연합학습 (Federated Learning)

1. 연합학습 (Federated Learning)의 개념 및 필요성 (1) 연합학습의 개념 개념도 개념 분산 저장된 데이터 이동 없이 각 장치의 학습…

생성형 AI (Generative AI)

1. 생성형 AI (Generative AI)의 개요 (1) 생성형 AI의 개념 및 특징 개념 특징 대규모 데이터에서 패턴과 규칙을 학습하여 사용자…

파인튜닝 (Fine-Tuning)

1. 파인튜닝 (Fine-Tuning)의 개념 및 필요성 개념 필요성 인공지능 모델이 특정 작업이나 도메인에 적합하도록 이미 훈련된 인공지능 모델에 특정 데이터셋을…

어텐션 메커니즘 (Attention Mechanism)

1. 어텐션 메커니즘의 개념 및 필요성 개념 seq2seq의 경사감소 소멸(Gradient Descent Vanishing) 등 RNN 모델의 문제 해결을 위해 출력 단어…

GNN (Graph Neural Network)

1. GNN (Graph Neural Network)의 개요 등장 배경 딥러닝 모델은 CNN, RNN, Transformer 등 다양한 신경망 모델 종류로 발전했지만, 복잡한…

생성형 AI 윤리 가이드

1. 생성형 AI의 개념 및 윤리적 활용의 필요성 (1) 생성형 AI의 개념 및 파급효과 개념 파급 효과 대규모 데이터, 패턴…

대규모 언어 모델 (LLM, Large Language Model)

1. 대규모 언어 모델 (LLM, Large Language Model) 개요 (1) 대규모 언어 모델의 등장 배경 (2) 대규모 언어 모델의 개념…

유사도 측정법 (Similarity Measure)

1. 유사도(Similarity)의 개념 및 유사도 측정의 필요성 유사도 (Similarity) 유사도 측정의 필요성 벡터 공간 내 노드(데이터 포인트) 사이의 관계를 거리,…

벡터 데이터베이스 (Vector Database)

1. 벡터 데이터베이스 (Vector Database)의 개념, 필요성 개념 필요성 대량의 고차원 데이터 저장 및 조회 위해 컨텐츠 벡터 임베딩 및…