X

알고리즘/AI

하이퍼파라미터 (Hyperparameter)

I. 하이퍼파라미터의 개념 최적의 딥러닝 모델 구현을 위해 학습률이나 배치크기, 훈련 반복 횟수, 가중치 초기화 방법 등 인간의 선험적 지식을…

이용자 중심의 지능정보사회를 위한 원칙

I. 이용자 중심의 지능정보사회를 위한 원칙의 배경과 목적 원칙의 배경 원칙의 목적 - 인간 의사결정 보조/대체 혁신 서비스 출현 (맞춤형…

비지도 학습 (Unsupervised Learning)

I. 비지도 학습의 개요 가. 비지도 학습 (Unsupervised Learning, 자율 학습)의 개념 입력데이터에 대한 목표값 없이 데이터가 어떻게 구성되었는지를 알아내는…

지도 학습 (Supervised Learning)

I. 지도 학습의 개요 가. 지도 학습 (Supervised Learning)의 개념 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning)…

패턴인식

I. 사물 인식 기술, 패턴인식 문자, 물체 등을 인식하기 위해 표준 패턴과 입력 패턴 비교 기반 사물 식별 및 클래스…

전이 학습 (Transfer Learning)

I. 학습치 재사용 기법, 전이 학습 개념 필요성 데이터 세트가 유사한 분야에 학습치를 전이하여 Fine Tuning 기반 신경망 학습 재사용…

심층신뢰망 (DBN, Deep Belief Network)

I. Gradient descent vanishing 해결 위한 심층신뢰망 가. 심층신뢰망 (DBN, Deep Belief Network)의 개념 입력층과 은닉층으로 구성된 RBM을 블록처럼 여러…

DBSCAN

I. 밀도기반 군집화 기법, DBSCAN 가. DBSCAN 의 개념 핵심 벡터로부터 ε 반경 내 접근 가능한 모든 데이터 벡터들의 집합(군집)을…

인공신경망 (Artificial Neural Network)

I. 분류와 예측 모형, 인공신경망, ANN 가. 인공신경망의 개념 인간의 뉴런을 모방하여 가중치 조정을 통한 분류와 예측을 위해 다수 노드를…

Q-러닝 (Q-Learning)

I. 강화 학습 기법, Q-러닝(Q-Learning) 특정 상태에서 행동에 대한 미래값(Q)을 계산하여, 최적 정책을 찾는 마르코프 의사결정 기반 강화학습 기법 마르코프…