머신러닝
앰비언트 인비저블 인텔리전스 (Ambient Invisible Intelligence)
1. 앰비언트 인비저블 인텔리전스의 개념 앰비언트 인비저블 인텔리전스 (Ambient Invisible Intelligence) 개념도 개념 소형 스마트 태그와 센서를 통해 대상의 상태를…
AIOps (AI for IT Operations)
1. AIOps (AI for IT Operations)의 개념 및 필요성 개념 IT 운영 관리 자동화 위해 기계 학습 분석을 통해 IT…
인공지능 (Artificial Intelligence)
1. 인간의 지능을 모방한 기술, 인공지능의 개요 (1) 인공지능 (Artificial Intelligence)의 개념 및 특징 개념 인간의 지능을 모방하여 문제를 해결하거나…
엣지 AI (Edge AI)
1. 단말 장치 자체 AI 서비스, 엣지 AI (Edge AI)의 개념 개념도 개념 IoT, 모바일 장치 등 단말 장치의 신속한…
텐서플로 (TensorFlow)
1. 텐서플로 (TensorFlow)의 개요 개념 머신러닝 모델의 제작, 빌드 및 배포를 위해 개발 도구, 라이브러리, 커뮤니티 리소스로 구성된 엔드 투…
AIaaS (AI as a Service) 서비스와 활용 고려사항
I. 국내 기업과 기관에서의 인공지능 도입의 필요성 "디지털 전환의 핵심 기반 기술로 인공지능 도입이 필요" 현재 세계는 기계의 지능화를 통해…
머신러닝 파이프라인 (Machine Learning Pipeline)
I. 머신러닝 파이프라인(ML Pipeline)의 개요 가. 머신러닝 파이프라인의 개념 데이터 수집부터 전처리, 학습 모델 배포, 예측까지 전과정을 순차적으로 처리하도록 설계된…
하이퍼파라미터 (Hyperparameter)
I. 하이퍼파라미터의 개념 최적의 딥러닝 모델 구현을 위해 학습률이나 배치크기, 훈련 반복 횟수, 가중치 초기화 방법 등 인간의 선험적 지식을…
비지도 학습 (Unsupervised Learning)
I. 비지도 학습의 개요 가. 비지도 학습 (Unsupervised Learning, 자율 학습)의 개념 입력데이터에 대한 목표값 없이 데이터가 어떻게 구성되었는지를 알아내는…
지도 학습 (Supervised Learning)
I. 지도 학습의 개요 가. 지도 학습 (Supervised Learning)의 개념 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning)…