1. 지도 학습 모델, 의사결정나무 (Decision Tree)의 개념 개념도 개념 빅데이터 및 인공지능 분석을 위해 의사결정 규칙을 나무 구조로 도표화하여 분류와 예측을 수행하는 분석 기법 의사결정 나무 (의사결정 트리)는 두 개 이상의 변수가 결합하여 목표 변수에 어떻게 영향을 주는지 쉽게 알 수 있으며, 트리 구조로 표현되기 때문에 모형을 쉽게 이해 2. 의사결정나무 기반 분석
I. Polyglot 환경 빅데이터 분석, 람다 아키텍처 가. 람다 아키텍처의 개념 데이터 대상 분석 기능 수행 위해 배치, 스피드, 서빙 레이어로 구성된 데이터 분석 아키텍처 나. 람다 아키텍처의 특징 범용성, 확장성, 결함허용성 전송 지연최소화, 분석 결과 일관성, 성능, 확장의 균형, 정확성 다. 람다 아키텍처의 구성도 저장된 데이터를 일괄 처리하는 배치 레이어와 실시간 유입 데이터 처리용