[태그:] 생성형 AI

컨텍스트 엔지니어링 (Context Engineering)

1. 컨텍스트 엔지니어링 (Context Engineering)의 개요 (1) 컨텍스트 엔지니어링의 개념 및 필요성 개념 AI 모델이 주어진 상황과 사용자에 최적화된 질의 응답 및 도구를 사용하도록 장/단기 기억,  프롬프트, RAG, MCP, 상태 관리 등 문맥(Context)을 관리하는 기술 필요성 상황을 이해 – 상황 기반 사용자의 요구를 이해 신뢰성 확보 – 일관적이고 오차 없는 결과를 도출 복잡한 과업 처리

바이브 코딩 (Vibe Coding)

1. 바이브 코딩의 개요 (1) 바이브 코딩이 소프트웨어 개발에 미치는 영향 (2) 바이브 코딩의 개념 원하는 기능을 자연어로 입력하여 생성형 AI를 통해 코드를 자동으로 생성, 개선 및 디버깅하는 인공지능 기반 소프트웨어 개발 방식 (3) 바이브 코딩의 특징 SW 개발 접근성 향상 – 로우 코딩, 노 코딩과 유사하게 소프트웨어 개발의 진입 장벽을 낮추고 비개발자의 소프트웨어 개발

VAE (Variational Auto-Encoder)

1. VAE (Variational Auto-Encoder)의 개념 및 특징 개념 특징 원본 특징을 보존하며 새로운 데이터 생성 위해 Encoder, Decoder, Sample Latent Vector 기반 새로운 데이터를 생성하는 인공지능 모델 – 원본 데이터 분포 기반 원본 특징을 보존 – 랜덤 노이즈 기반 새로운 데이터 생성 – 확률 모델 기반 잠재 코드 유연한 계산 – 명확한 모델 평가 기준을

기계 고객 (Machine Customer)

1. 기계 고객 (Machine Customer)의 개념 및 특징 개념 특징 인간이나 다른 기계 대신 거래에 참여하여 자율적으로 협상하고 결제하여 상품과 서비스를 구매하는 지능형 시스템 – 알고리즘 기반 최적 의사결정 – 데이터 분석 기반 행동 패턴 결정 – 신규 데이터 기반 지속 학습 – 감정 및 충동 없는 논리적 구매 최근 센서 등 사물인터넷과 인공지능의 발전으로,

생성형 AI 윤리 가이드

1. 생성형 AI의 개념 및 윤리적 활용의 필요성 (1) 생성형 AI의 개념 및 파급효과 개념 파급 효과 대규모 데이터, 패턴 학습 기반 이용자 요구에 따라 텍스트, 이미지, 비디오, 음악, S/W 코드 등 새로운 결과물을 생성하는 인공지능 기술 – 외국어 문서 번역, 방대한 문서 요약 – 음성 회의 텍스트 기록, 회화 공부 – 소프트웨어 코딩, 작곡,

랭체인 (LangChain)

1. LLM 서비스 개발 프레임워크, 랭체인 (LangChain)의 개념 및 필요성 개념 필요성 효율적인 LLM 기반 서비스 개발을 위해 다양한 언어 모델과 에이전트, 콜백 등 기능 연결 및 통합을 간소화하도록 설계된 언어 모델 기반 애플리케이션 개발 프레임워크 – 모듈식 구성으로 Application 구현 간소화 – 모듈을 체인으로 연결하여 기능 확장성 확보 – API 기반 LLM 교체/업데이트 반영

검색 증강 생성 (RAG, Retrieval Augmented Generation)

1. AI 환각 해소, 검색 증강 생성 (RAG, Retrieval Augmented Generation)의 개념 및 필요성 개념 생성형 AI 모델의 정확성과 신뢰성 향상을 위해 응답 생성 전 외부의 신뢰할 수 있는 지식 베이스를 참조하는 대규모 언어 모델(LLM) 최적화 기술 필요성 검색 증강 생성은 사실에 근거한 최신 정보를 통해 AI 환각 현상 등 거대 언어 모델의 문제점을 해소하고

인공지능 (Artificial Intelligence)

1. 인간의 지능을 모방한 기술, 인공지능의 개요 (1) 인공지능 (Artificial Intelligence)의 개념 및 특징 개념 인간의 지능을 모방하여 문제를 해결하거나 아이디어를 도출하는 기술 특징 – 인간처럼 사고/행동 (Thinking/Acting Humanly) – 합리적으로 사고/행동 (Thinking/Acting Raionally) (2) 인공지능과 기계 학습, 딥러닝과의 관계 인공지능 (Artificial Intelligence) 인간의 지능을 모방하여 인간처럼 사고/행동하는 가장 큰 범위를 포괄하는 개념 기계 학습