1. 랜덤 포레스트 (Random Forest)의 개요 개념도 개념 분류/회귀 분석 등에 사용하기 위해 다수 의사결정 트리를 결합하여 분류/회귀 모형을 생성하는 앙상블 기반 머신러닝 학습 기법 특징 임의성 임의로 각 트리들이 서로 다른 특성을 가짐 과적합 극복 임의화를 통한 과적합 문제를 극복 앙상블 학습 기법 중 bagging 보다 더 많은 임의성을 주어 학습기 생성 후 결합하여
I. 분류 모델 생성 알고리즘, 배깅과 부스팅 배깅 부스팅 데이터에서 여러 bootstrap 자료 생성, 모델링 후 결합하여 최종 예측 모형을 만드는 알고리즘 오분류 개체들에 가중치를 적용하여 새로운 분류 규칙 생성 반복 기반 최종 예측 모형 생성 II. 배깅과 부스팅 알고리즘 수행 절차 가. 배깅 알고리즘 수행 절차 절차도 절차 ① Row data에서 bootstrap 데이터