I. CNN과 RNN의 융합 기술, CRNN 특징 추출과 시계열 모델을 통합하여 이미지에서 시계열 데이터를 인식하는 고성능 학습 모델 II. CRNN의 수행 절차 및 구성요소 가. CRNN의 수행 절차 Convolution Net. 최상부에서 출력된 Feature Sequence의 프레임 예측 위해 Recurrent Net. 사용 나. CRNN의 구성요소 구분 구성요소 설명 계층 요소 CNN – Feature Map, Pooling, Sampling
I. RNN 장기 의존성 문제 개선, LSTM 가. LSTM의 개념 개념도 개념 순환신경망의 장기 의존성 문제 해결하기 위해 셀 스테이트 기반 신경망 모델 나. 순환신경망의 장기 의존성 문제 RNN은 매번 Step마다 위 과정을 반복, 역전파 시 더 많은 곱셈 연산에 따른 경사 감소로 뒤 노드까지 영향 불가 Step t에서의 hidden layer : ht(ht-1Whh)Whh II.
I. 순환 신경망, RNN 가. RNN (Recurrent Neural Network)의 개념 음성인식, 자연어 등 현재 입력 데이터와 과거 데이터를 고려하여 순차 데이터를 처리하는 순환 신경망 모델 나. RNN의 특징 과거-미래 영향 구조 – 루프 구조를 통해 과거의 데이터가 미래에 영향을 줄 수 있는 구조 경사 하강법 – 함수의 기울기로 최소값 탐색 알고리즘 – 2, 3차원 알고리즘
I. 인공신경방 빠른 객체 탐색, YOLO 개념 필요성 빠른 속도로 객체 탐색 위해 그리드 Bounding box를 통해 최적 객체 탐색 및 분류하는 딥러닝 기반 Fast 객체 탐색 – RCNN의 느린 속도 개선 – 전체 이미지 기반 맥락이해 – Object의 일반화 특징학습 II. YOLO의 객체 탐색/분류 절차 및 구현 기술 가. YOLO 기반 객체 탐색/분류
I. 영상 내 사물 인식, R-CNN(Region-based CNN) 입력 영상 내 사물 인식을 위해 사물의 영역 탐지 및 사물 특징 추출, 분류 CNN 기반 신경망 알고리즘 II. R-CNN의 구성도 및 구성요소 가. R-CNN의 구성도 ① 이미지 입력 ② 2000개 정도 Region Proposal 추출(Selective Search) ③ Cropping(자르기), Warping(크기 동일화), Feature 추출 ④ 각 Region Proposal Feature
I. 2차원 이미지 분석, CNN 가. CNN의 개념 Convolution, Pooling, Fully Connected layer를 통해 특징 추출, 차원 축소하여 이미지를 분류, 인식하는 신경망 알고리즘 나. CNN의 특징 ReLU – Rectified Linear Unit 활성화 함수 – Gradient Vanishing 문제 해결 Dropout – 인공 신경망의 Overfitting 방지 위해 특정 뉴런 미동작 학습 수행 Bigdata – 과적합(Overfitting) 문제 해결
I. 확률 밀도 추정 알고리즘, KNN(K-Nearest Neighbor) 가. KNN의 개념 Sample에 주어진 x에서 가장 가까운 k개의 원소가 많이 속하는class로 x를 분류하는 비모수적 확률밀도 추정방법 나. KNN의 특징 NN 개선 – k개의 데이터에 대한 다수결 방식 인스턴스 개선 – 함수의 지역적 근사에 기반한 추정 게으른 학습 (Lazy Learning) – 데이터셋 저장만 하며, 일반화된 모델을 능동적으로 만들지
I. 연관성 규칙 탐사, A Priori (선험적) 알고리즘 가. A Priori 알고리즘의 개념 연관 규칙(Association Rule)의 대표적 형태로, 발생 빈도 기반 데이터 간의 연관 규칙 발견 알고리즘 나. 연관 규칙 발견 과정 대용량 데이터: 트랜잭션 대상 최소지지도 이상 만족 집합 발견 연관규칙 발견: 최소신뢰도 이상 만족 항목 연관 규칙 생성 II. A Priori 알고리즘의
I. Clustering을 통한 데이터 분류 기법, K-means 알고리즘 가. K-means 알고리즘의 개념 데이터를 임의의 중심점을 기준으로 최소의 거리가 되도록 K개의 군집화 하여 분류하는 비지도학습 나. K-means 알고리즘 특징 반복적 – 초기 잘못된 병합을 알고리즘 반복 수행 회복 대규모 적용 – 간단하고 대규모 적용에 계산 시간 짧음 연관성 – 연관성 높은 데이터는 근거리 위치 특성 이용
I. 최적 Policy 수립, MDP 개념 필요성 이산시간 확률제어 과정으로, 상태, 행동 및 전이확률 기반 최적의 의사결정 정책 을 탐색하는 강화학습 기법 – 인공지능 판단 정책 필요 – 최적 의사결정 탐색 – AI 자율적 학습 필요 – 최적화 문제 도구로 활용 II. MDP의 전이도/구성요소 및 알고리즘 가. MDP의 전이도/구성요소 전이도 구성요소 – S: 상태의