[태그:] 인공지능 학습

중첩 학습 (NL, Nested Learning)

1. 딥러닝 망각 문제 극복, 중첩 학습의 개요 중첩 학습 (NL, Nested Learning) (1) 기존 딥러닝 모델의 문제점과 중첩 학습의 필요성 (2) 중첩 학습의 개념 및 특징 개념 특징 기존 딥러닝 모델의 망각 문제 극복 위해 계층적/연관 기억, CMS, HOPE 아키텍처 기반 지속 학습을 제공하는 인공지능 학습 패러다임 – 기존 학습 모델의 망각 문제 극복

드롭아웃 (Dropout)

1. co-adaptation 해결 기법, 드롭아웃 (1) 드롭아웃(Dropout)의 개념 딥러닝 시 오버피팅 문제를 해결하기 위해 노드 중 일부를 제거하는 인공지능 최적 학습기법 (2) 드롭아웃의 목적 Overfitting 해결 – 신경망 비대 시 high variance 문제 해결 – Voting 효과로 정규화 유사 효과 가능 co-adaptation 회피 – 특정 뉴런의 가중치나 영향 감소 – 강건한 신경망 구성 가능