[태그:] 기계학습

머신러닝 파이프라인 (Machine Learning Pipeline)

I. 머신러닝 파이프라인(ML Pipeline)의 개요 가. 머신러닝 파이프라인의 개념 데이터 수집부터 전처리, 학습 모델 배포, 예측까지 전과정을 순차적으로 처리하도록 설계된 머신러닝 아키텍처 나. 머신러닝 파이프라인의 필요성 머신러닝 자동화 머신러닝 모델 전 과정 지속 수행 위한 파이프라인 기반 자동화 예측 정확성 향상 내부 구조 이해를 통한 머신러닝 성능(예측의 정확성) 향상   II. 머신러닝 파이프라인의 데이터 처리

비지도 학습 (Unsupervised Learning)

I. 비지도 학습의 개요 가. 비지도 학습 (Unsupervised Learning, 자율 학습)의 개념 입력데이터에 대한 목표값 없이 데이터가 어떻게 구성되었는지를 알아내는 기계 학습(Machine Learning) 기법 나. 비지도 학습의 특징 비정제 데이터를 입력하여 훈련데이터 없이 데이터의 특징 요약과 군집 (Clustering) 수행 목표값을 정해주지 않아도 되고 사전 학습이 필요없으므로 속도가 빠름   II. 비지도 학습의 기법 및 알고리즘

지도 학습 (Supervised Learning)

I. 지도 학습의 개요 가. 지도 학습 (Supervised Learning)의 개념 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning) 기법 나. 지도 학습의 특징 명시적인 정답이 주어진 상황에서 기계를 학습 시키기 위해 데이터와 레이블을 사용 사람이 목표값에 개입하므로 정확도가 높으나 시간이 오래걸리고 필요 데이터량이 많음   II. 지도 학습의 기법 및 알고리즘 가. 지도

DBSCAN

I. 밀도기반 군집화 기법, DBSCAN 가. DBSCAN 의 개념 핵심 벡터로부터 ε 반경 내 접근 가능한 모든 데이터 벡터들의 집합(군집)을 생성하는 기법 DBSCAN : Density-Based Spatial Clustering of Application with Noise 나. DBSCAN 주요 개념 ε (epsilon) – 주어진 개체 들의 반경 minPts – ε 반경 내 군집 위해 필요한 객체 수   II. 군집

인공신경망 (Artificial Neural Network)

I. 분류와 예측 모형, 인공신경망, ANN 가. 인공신경망의 개념 인간의 뉴런을 모방하여 가중치 조정을 통한 분류와 예측을 위해 다수 노드를 연결한 계층적 조직 나. 인공신경망의 특징 특징 구성요소 예를 통한 학습 – 예를 계속 제시하여 원하는 형태 학습 일반화 – 학습 후 미학습된 입력에도 올바른 출력 연상기억 – 일부 유실된 정보 → 유사한 출력 결함

KNN (K-Nearest Neighbor)

I. 확률 밀도 추정 알고리즘, KNN(K-Nearest Neighbor) 가. KNN의 개념 Sample에 주어진 x에서 가장 가까운 k개의 원소가 많이 속하는class로 x를 분류하는 비모수적 확률밀도 추정방법 나. KNN의 특징 NN 개선 – k개의 데이터에 대한 다수결 방식 인스턴스 개선 – 함수의 지역적 근사에 기반한 추정 게으른 학습 (Lazy Learning) – 데이터셋 저장만 하며, 일반화된 모델을 능동적으로 만들지

인공지능 음성인식 기술

인공지능 음성인식 기술 I. AI 기반 음성비서 서비스, 인공지능 음성인식 기술 – 사람의 음성을 인공지능 기반 패턴화, 기계학습을 통해 업무 보조, 생활 편의 서비스 제공 기술   II. 인공지능 음성인식 기술 분류 가. 음성처리 측면의 기술 구분 음성인식 기술 설명 자연어 인식 word2vec – 벡터 평면 배치, 워드임베딩 – CBOW, Skip-gram 방식 NLU – 전처리,

기계 학습 (Machine Learning)

I. 인간의 학습 과정 모방, 기계 학습 대량의 데이터를 지도/비지도, 강화 학습 등을 통해 문제의 해답을 찾아내는 기법 지도학습(Supervised Learning) 비지도학습(Unsupervised Learning) 강화학습(Reinforcement Learning) 준지도학습(Semi-Supervised Learning)   II. 지도 학습과 비지도 학습의 개념 지도 학습 비지도 학습 – 입출력이 쌍으로 구성된 학습 예제로부터 맵핑하는 함수 학습 형태 – 목표값 없이 입력값으로 공통 특성을 파악하는 귀납적

드롭아웃 (Dropout)

I. co-adaptation 해결 기법, 드롭아웃 가. 드롭아웃(Dropout)의 개념 딥러닝 시 오버피팅 문제를 해결하기 위해 노드 중 일부를 제거하는 인공지능 최적 학습기법 나. 드롭아웃의 목적 Overfitting 해결 – 신경망 비대 시 high variance 문제 해결 – Voting 효과로 정규화 유사 효과 가능 co-adaptation 회피 – 특정 뉴런의 가중치나 영향 감소 – 강건한 신경망 구성 가능  

강화학습 (Reinforcement Learning)

I. 알파고의 학습 방법, 강화학습 가. 강화학습(Reinforcement Learning)의 개념 – 데이터의 상태를 인식하여 행위 기반 환경으로 받는 보상을 학습하여 최적화 정책 찾는 기계학습 나. 강화학습의 필요성 학습/결과가 무한히 많은 경우 지도/비지도 학습 적용 어려움 매 순간 특정 Action 시 Reward(+1, -1)기반 최적 정책 학습   II. 강화학습의 기본원리/구성요소 및 세부 알고리즘 가. 강화학습의 원리/구성요소 – 원리: MDP(Markov Decision Process)기반 상태 전이가 현재 상태 St와 입력(행동) At에 의해 확률적으로 결정되는 모델 구성요소 설명