[태그:] 인공지능

대규모 언어 모델 (LLM, Large Language Model)

1. 대규모 언어 모델 (LLM, Large Language Model) 개요 (1) 대규모 언어 모델의 등장 배경 (2) 대규모 언어 모델의 개념 및 특징 개념 특징 인간의 언어 이해와 생성을 위해 대량의 언어 데이터 학습, 파인튜닝하여 생성된 인공신경망 기반 생성형AI 언어 모델 – LLM은 대량의 언어 데이터로 훈련하여 맥락 파악 후 적절한 응답을 생성 – 한 단어가

벡터 데이터베이스 (Vector Database)

1. 벡터 데이터베이스 (Vector Database)의 개념, 필요성 개념 필요성 대량의 고차원 데이터 저장 및 조회 위해 컨텐츠 벡터 임베딩 및 쿼리 벡터 유사도 비교 기반 신속하게 인덱싱하는 데이터베이스 – 고차원 데이터 저장 및 조회 수요 증가 – 데이터 내용 유사성에 따른 맥락 이해 – AI 서비스의 신속한 연산 처리 요구 – 대규모 언어 모델에 장기

랭체인 (LangChain)

1. LLM 서비스 개발 프레임워크, 랭체인 (LangChain)의 개념 및 필요성 개념 필요성 효율적인 LLM 기반 서비스 개발을 위해 다양한 언어 모델과 에이전트, 콜백 등 기능 연결 및 통합을 간소화하도록 설계된 언어 모델 기반 애플리케이션 개발 프레임워크 – 모듈식 구성으로 Application 구현 간소화 – 모듈을 체인으로 연결하여 기능 확장성 확보 – API 기반 LLM 교체/업데이트 반영

인공지능 (Artificial Intelligence)

1. 인간의 지능을 모방한 기술, 인공지능의 개요 (1) 인공지능 (Artificial Intelligence)의 개념 및 특징 개념 인간의 지능을 모방하여 문제를 해결하거나 아이디어를 도출하는 기술 특징 – 인간처럼 사고/행동 (Thinking/Acting Humanly) – 합리적으로 사고/행동 (Thinking/Acting Raionally) (2) 인공지능과 기계 학습, 딥러닝과의 관계 인공지능 (Artificial Intelligence) 인간의 지능을 모방하여 인간처럼 사고/행동하는 가장 큰 범위를 포괄하는 개념 기계 학습

웹 3.0 (Web 3.0)의 구현 방안과 발전 전망

1. 웹 3.0 (Web 3.0)의 의미 시맨틱 웹 관점 폭발적으로 증가하는 정보를 의미론적으로 이해하고 의미와 맥락을 통해 가장 유사한 정보를 검색 또는 연결 탈중앙화 관점 중앙화/독점화된 기존 웹의 문제점 대응을 위해 웹/데이터 탈중앙화, 데이터 소유권 및 프라이버시를 보장 블록체인 관점 블록체인 기술을 서비스에 활용하기 위한 DeFi, P2E, DAO, DEX, NFT 관련 서비스 환경 데이터 소유

엣지 AI (Edge AI)

1. 단말 장치 자체 AI 서비스, 엣지 AI (Edge AI)의 개념 개념도 개념 IoT, 모바일 장치 등 단말 장치의 신속한 인공지능 서비스를 위해 단말 장치에서 생성한 데이터로 AI 알고리즘을 직접 실행하는 분산형 컴퓨팅 패러다임 단말장치에서 데이터생성과 AI 알고리즘 처리를 지원하므로 AI 모델 업데이트 시에만 중앙서버 연결, 온디바이스 AI(On-Device AI) 방식이 대표적   2. 엣지 AI

서비타이제이션 (Servitization)과 AI역할

1. 제조업의 위기와 서비타이제이션 (1) 제조업의 위기 글로벌 경기 둔화에 따른 가치 창출 Value Chain 부재 산업 구조조정의 미흡과 보호무역주의 확대 (2) 서비타이제이션(Servitization)의 개념 및 필요성 개념 필요성 제품의 판매 증대 또는 새로운 비즈니스 역량 발굴을 위해 서비스 요소를 제품 수준뿐 아니라 기업 수준으로 도입하는 제품-서비스 통합 전략 – 제품 생산 중심에서 탈피 – 가치사슬

텐서플로 (TensorFlow)

1. 텐서플로 (TensorFlow)의 개요 개념 머신러닝 모델의 제작, 빌드 및 배포를 위해 개발 도구, 라이브러리, 커뮤니티 리소스로 구성된 엔드 투 엔드 오픈소스 플랫폼 특징 직관적인 API Keras , Python, C++ API 이외 하위 호환성 지원 이중 모드 CPU , GPU 모드 별 ML 연산과 단순 작업 분할 TPU 텐서플로우 전용 최적화 칩셋 활용 구글이 2011년에

AIaaS (AI as a Service) 서비스와 활용 고려사항

I. 국내 기업과 기관에서의 인공지능 도입의 필요성 “디지털 전환의 핵심 기반 기술로 인공지능 도입이 필요” 현재 세계는 기계의 지능화를 통해 생산성이 고도로 향상되는 4차 산업혁명 시대에 있으며, AI는 자동화/최적화를 통한 효율화로 기존 산업의 생산성 개선, 신산업 창출 등 성장 동력 확충에 기여 인공지능을 활용한 혁신적 제품과 서비스로 시장 경쟁력을 확보와 다양한 사회문제를 해결할 수 있을

비대면 소프트웨어 산업 동향 및 육성 방안

I. 디지털 경제 가속화에 따른 비대면 SW 활용 가속화 최근 전세계적으로 이전 글로벌 경제위기와는 다르게 산업/사회 전반에서 경영 활동과 소비 행태의 변화를 유발하며 디지털 경제로의 구조적 변화로 비대면 소프트웨어 활용이 가속화되고 디지털 전환이 촉진되는 추세   II. 분야 별 비대면 소프트웨어 활용 동향 가. 개인/사회 분야의 비대면 소프트웨어 활용 동향 분야 활용 동향 활용 효과