I. 지도 학습의 개요 가. 지도 학습 (Supervised Learning)의 개념 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning) 기법 나. 지도 학습의 특징 명시적인 정답이 주어진 상황에서 기계를 학습 시키기 위해 데이터와 레이블을 사용 사람이 목표값에 개입하므로 정확도가 높으나 시간이 오래걸리고 필요 데이터량이 많음 II. 지도 학습의 기법 및 알고리즘 가. 지도
I. 분류와 예측 모형, 인공신경망, ANN 가. 인공신경망의 개념 인간의 뉴런을 모방하여 가중치 조정을 통한 분류와 예측을 위해 다수 노드를 연결한 계층적 조직 나. 인공신경망의 특징 특징 구성요소 예를 통한 학습 – 예를 계속 제시하여 원하는 형태 학습 일반화 – 학습 후 미학습된 입력에도 올바른 출력 연상기억 – 일부 유실된 정보 → 유사한 출력 결함
I. 인간의 학습 과정 모방, 기계 학습 대량의 데이터를 지도/비지도, 강화 학습 등을 통해 문제의 해답을 찾아내는 기법 지도학습(Supervised Learning) 비지도학습(Unsupervised Learning) 강화학습(Reinforcement Learning) 준지도학습(Semi-Supervised Learning) II. 지도 학습과 비지도 학습의 개념 지도 학습 비지도 학습 – 입출력이 쌍으로 구성된 학습 예제로부터 맵핑하는 함수 학습 형태 – 목표값 없이 입력값으로 공통 특성을 파악하는 귀납적
I. 나이브 베이지안 개념 문서나 데이터 요소 등장 확률 도출을 위해 베이즈 정리 기반 독립적 확률 벡터 분류 기법 II. 나이브 베이지안 분류기 수행 절차 가. 나이브 베이지안 분류 기법 수행 절차 절차 설명 수식 지도 학습 분류 – 분류기 실행 전 학습 벡터 결과 기반 분류 수행 C = {Comedy, Action} 입력 벡터