1. 랜덤 포레스트 (Random Forest)의 개요 개념도 개념 분류/회귀 분석 등에 사용하기 위해 다수 의사결정 트리를 결합하여 분류/회귀 모형을 생성하는 앙상블 기반 머신러닝 학습 기법 특징 임의성 임의로 각 트리들이 서로 다른 특성을 가짐 과적합 극복 임의화를 통한 과적합 문제를 극복 앙상블 학습 기법 중 bagging 보다 더 많은 임의성을 주어 학습기 생성 후 결합하여
1. 지도 학습 모델, 의사결정나무 (Decision Tree)의 개념 개념도 개념 빅데이터 및 인공지능 분석을 위해 의사결정 규칙을 나무 구조로 도표화하여 분류와 예측을 수행하는 분석 기법 의사결정 나무 (의사결정 트리)는 두 개 이상의 변수가 결합하여 목표 변수에 어떻게 영향을 주는지 쉽게 알 수 있으며, 트리 구조로 표현되기 때문에 모형을 쉽게 이해 2. 의사결정나무 기반 분석