[태그:] Encoder

VAE (Variational Auto-Encoder)

1. VAE (Variational Auto-Encoder)의 개념 및 특징 개념 특징 원본 특징을 보존하며 새로운 데이터 생성 위해 Encoder, Decoder, Sample Latent Vector 기반 새로운 데이터를 생성하는 인공지능 모델 – 원본 데이터 분포 기반 원본 특징을 보존 – 랜덤 노이즈 기반 새로운 데이터 생성 – 확률 모델 기반 잠재 코드 유연한 계산 – 명확한 모델 평가 기준을

seq2seq

I. 연속 단어의 응답 생성, seq2seq 문장에 대한 응답을 생성하기 위해 여러 개의 Neural Network Cell을 조합하여 구성한 자연어처리모델   II. seq2seq의 구성도 및 구성요소 가. seq2seq의 구성도 – Encoder 부분에서 입력 응답을 받아 하나의 hidden code 값으로 표현, Decoder에서는 hidden code와 start tag기반 적합한 결과 단어 추출 나. seq2seq 구현을 위한 구성요소 구성요소 처리