[태그:] TPU

파운데이션 모델 (Foundation Model)

1. 파운데이션 모델 (Foundation Model)의 개요 (1) 파운데이션 모델의 개념 개념도 개념 맞춤형 AI 서비스의 효율적 구축을 위해 자기 지도 학습과 트랜스포머 아키텍처 기반 다운스트림 작업을 통해 다양한 AI 모델에 최적화 되도록 준비된 범용 AI 기초 모델 (2) 파운데이션 모델의 특징 구분 특징 특징 설명 학습 측면 자기 지도 학습 – 전이학습 형태로, 데이터의 어노테이션

텐서플로 (TensorFlow)

1. 텐서플로 (TensorFlow)의 개요 개념 머신러닝 모델의 제작, 빌드 및 배포를 위해 개발 도구, 라이브러리, 커뮤니티 리소스로 구성된 엔드 투 엔드 오픈소스 플랫폼 특징 직관적인 API Keras , Python, C++ API 이외 하위 호환성 지원 이중 모드 CPU , GPU 모드 별 ML 연산과 단순 작업 분할 TPU 텐서플로우 전용 최적화 칩셋 활용 구글이 2011년에

TPU (Tensor Processing Unit)

I. 인공신경망 맞춤형 ASIC, TPU 가. TPU(Tensor Processing Unit)의 개념 인공신경망 데이터 고속처리를 위한 맞춤형 ASIC 기반 인공신경망 데이터 처리 전용 하드웨어 나. TPU 부각 배경 2006년 맞춤형 H/W(ASIC, FPGA, GPU) 실행 프로그램 제한 2013년 인공신경망 패러다임은 계산요구량 / 필요성능 증가 이러한 요구 충족을 위한 GPU 증설은 과다 비용 발생   II. TPU 구성도 및