I. 인공신경방 빠른 객체 탐색, YOLO 개념 필요성 빠른 속도로 객체 탐색 위해 그리드 Bounding box를 통해 최적 객체 탐색 및 분류하는 딥러닝 기반 Fast 객체 탐색 – RCNN의 느린 속도 개선 – 전체 이미지 기반 맥락이해 – Object의 일반화 특징학습 II. YOLO의 객체 탐색/분류 절차 및 구현 기술 가. YOLO 기반 객체 탐색/분류
I. 영상 내 사물 인식, R-CNN(Region-based CNN) 입력 영상 내 사물 인식을 위해 사물의 영역 탐지 및 사물 특징 추출, 분류 CNN 기반 신경망 알고리즘 II. R-CNN의 구성도 및 구성요소 가. R-CNN의 구성도 ① 이미지 입력 ② 2000개 정도 Region Proposal 추출(Selective Search) ③ Cropping(자르기), Warping(크기 동일화), Feature 추출 ④ 각 Region Proposal Feature
I. 2차원 이미지 분석, CNN 가. CNN의 개념 Convolution, Pooling, Fully Connected layer를 통해 특징 추출, 차원 축소하여 이미지를 분류, 인식하는 신경망 알고리즘 나. CNN의 특징 ReLU – Rectified Linear Unit 활성화 함수 – Gradient Vanishing 문제 해결 Dropout – 인공 신경망의 Overfitting 방지 위해 특정 뉴런 미동작 학습 수행 Bigdata – 과적합(Overfitting) 문제 해결