1. 어텐션 메커니즘의 개념 및 필요성 개념 seq2seq의 경사감소 소멸(Gradient Descent Vanishing) 등 RNN 모델의 문제 해결을 위해 출력 단어 예측 시점 마다 입력 시퀀스의 단어 가중치를 계산하여 정확도 감소를 보정하는 메커니즘 필요성 어텐션 메커니즘에서 어텐션 함수는 Softmax, Sigmoid, ReLu 함수 등 활성화 함수와 함께 사용하여 입력 시퀀스의 각 단어 가중치 계산 및 예측 벡터
1. GNN (Graph Neural Network)의 개요 등장 배경 딥러닝 모델은 CNN, RNN, Transformer 등 다양한 신경망 모델 종류로 발전했지만, 복잡한 구조나 관계 임베딩의 한계로 인해 그래프(Graph) 기반 신경망 모델 등장 개념 데이터의 특징 추출을 위해 이웃 노드 간 정보를 이용하여 특징 벡터를 찾아내는 그래프(Graph) 기반 신경망 모델 특징 추상적 개념 접근에 용이 연결된 데이터 표현
1. 생성형 AI의 개념 및 윤리적 활용의 필요성 (1) 생성형 AI의 개념 및 파급효과 개념 파급 효과 대규모 데이터, 패턴 학습 기반 이용자 요구에 따라 텍스트, 이미지, 비디오, 음악, S/W 코드 등 새로운 결과물을 생성하는 인공지능 기술 – 외국어 문서 번역, 방대한 문서 요약 – 음성 회의 텍스트 기록, 회화 공부 – 소프트웨어 코딩, 작곡,
1. 엣지 데이터센터 (Edge Datacenter)의 개요 (1) 엣지 데이터센터의 개념 및 필요성 개념 필요성 네트워크 단말 장치의 실시간 처리를 위해 엣지 캐싱 및 엣지 컴퓨팅 기반 캐시 콘텐츠, 클라우드 컴퓨팅 리소스 및 분석 기능을 제공하는 소규모 데이터센터 – 스트리밍, AI 서비스의 폭발적 증가 – 자율주행자동차 등 짧은 대기시간 필요 – 기업 및 개인정보의 안정성, 보안
1. 대규모 언어 모델 (LLM, Large Language Model) 개요 (1) 대규모 언어 모델의 등장 배경 (2) 대규모 언어 모델의 개념 및 특징 개념 특징 인간의 언어 이해와 생성을 위해 대량의 언어 데이터 학습, 파인튜닝하여 생성된 인공신경망 기반 생성형AI 언어 모델 – LLM은 대량의 언어 데이터로 훈련하여 맥락 파악 후 적절한 응답을 생성 – 한 단어가
1. 유사도(Similarity)의 개념 및 유사도 측정의 필요성 유사도 (Similarity) 유사도 측정의 필요성 벡터 공간 내 노드(데이터 포인트) 사이의 관계를 거리, 각도 등을 통해 수치화하여 정량적으로 표현한 유사성 척도 – 데이터 간 유사도 측정 기준 제공 – AI 데이터 라벨링, 모델 학습 및 진단 – AI 데이터세트의 오류, 편향 탐지 벡터 공간 내 노드의 크기(강도, 길이)
1. 전자봉투 (Digital Envelope)의 개요 (1) 전자봉투와 전자서명의 개념 및 전자봉투 기반 전자서명 특징 개념 전자봉투 – 전송할 내용을 암호화하기 위해 사용한 비밀키를 수신자만 볼 수 있도록 수신자 공개키로 암호화하여 기밀성을 보장하는 기법 전자서명 – 작성자 신원과 전자문서 변경여부를 확인할 수 있도록 공개키 암호화 방식과 해시함수를 이용한 전자문서에 대한 작성자 고유정보 특징 기밀성 보장 –
1. 벡터 데이터베이스 (Vector Database)의 개념, 필요성 개념 필요성 대량의 고차원 데이터 저장 및 조회 위해 컨텐츠 벡터 임베딩 및 쿼리 벡터 유사도 비교 기반 신속하게 인덱싱하는 데이터베이스 – 고차원 데이터 저장 및 조회 수요 증가 – 데이터 내용 유사성에 따른 맥락 이해 – AI 서비스의 신속한 연산 처리 요구 – 대규모 언어 모델에 장기
1. DPU(Data Processing Unit)의 개념 및 특징 개념 CPU의 인프라 기능 분산을 위해 네트워크 인터페이스 하드웨어에서 암호화, 웹서비스, 스토리지 제어 등 데이터 처리 가능한 컴퓨팅 프로세서 특징 SoC와 결합 프로그래밍 가능한 멀티코어 CPU로 SoC 구성요소와 결합 고속 데이터 처리 데이터를 파싱 및 처리하고, 데이터를 CPU/GPU로 효율적으로 전송 가속화 엔진 기능 머신러닝, 보안, 통신, 스토리지 등을
1. LLM 서비스 개발 프레임워크, 랭체인 (LangChain)의 개념 및 필요성 개념 필요성 효율적인 LLM 기반 서비스 개발을 위해 다양한 언어 모델과 에이전트, 콜백 등 기능 연결 및 통합을 간소화하도록 설계된 언어 모델 기반 애플리케이션 개발 프레임워크 – 모듈식 구성으로 Application 구현 간소화 – 모듈을 체인으로 연결하여 기능 확장성 확보 – API 기반 LLM 교체/업데이트 반영