[태그:] LSTM

자연어처리, NLP(Natural Language Processing)

I. 자연어처리 기술, NLP의 개념 기계와 인간 사이의 자연어처리 대화형 플랫폼 적용을 위해 자연 언어를 분석하고 생성하는 음성 변환, 언어 처리, 대화 관리 기술   II. NLP의 처리 구조 및 기술 요소 가. NLP의 처리 구조 나. NLP의 기술 요소 구분 기술 요소 세부 구현 기술 음성 변환 STT (Speech-to-Text) – 4KHz 음성신호를 문자(Text)로 변환

LSTM (Long Short Term Memory)

I. RNN 장기 의존성 문제 개선, LSTM 가. LSTM의 개념 개념도 개념 순환신경망의 장기 의존성 문제 해결하기 위해 셀 스테이트 기반 신경망 모델 나. 순환신경망의 장기 의존성 문제 RNN은 매번 Step마다 위 과정을 반복, 역전파 시 더 많은 곱셈 연산에 따른 경사 감소로 뒤 노드까지 영향 불가 Step t에서의 hidden layer : ht(ht-1Whh)Whh   II.

RNN (Recurrent Neural Network)

I. 순환 신경망, RNN 가. RNN (Recurrent Neural Network)의 개념 음성인식, 자연어 등 현재 입력 데이터와 과거 데이터를 고려하여 순차 데이터를 처리하는 순환 신경망 모델 나. RNN의 특징 과거-미래 영향 구조 – 루프 구조를 통해 과거의 데이터가 미래에 영향을 줄 수 있는 구조 경사 하강법 – 함수의 기울기로 최소값 탐색 알고리즘 – 2, 3차원 알고리즘

seq2seq

I. 연속 단어의 응답 생성, seq2seq 문장에 대한 응답을 생성하기 위해 여러 개의 Neural Network Cell을 조합하여 구성한 자연어처리모델   II. seq2seq의 구성도 및 구성요소 가. seq2seq의 구성도 – Encoder 부분에서 입력 응답을 받아 하나의 hidden code 값으로 표현, Decoder에서는 hidden code와 start tag기반 적합한 결과 단어 추출 나. seq2seq 구현을 위한 구성요소 구성요소 처리